Using Ensemble Random Forests for the extraction and exploitation of knowledge on gas turbine blading faults identification

نویسندگان

  • Manolis Maragoudakis
  • Euripidis Loukis
چکیده

The extraction and exploitation of existing knowledge assets for supporting decision making and increasing the effectiveness of various internal and external interventions is of critical importance for the success of modern organizations. The use of advanced Operational Research-based quantitative methods in combination with high capabilities information systems can be very useful for this purpose. In this article, we are investigating the use of Ensemble Random Forests for extracting, codifying and exploiting existing organizational knowledge on gas turbine blading faults identification, in the form of a large number of decision trees (called a ‘forest’); each of them has internal nodes corresponding to various tests on features of signals acquired from the gas turbine and leaf nodes corresponding to classifications to the healthy condition or particular faults. Two heterogeneous kinds of inserting randomness to the development of these forest trees, based on different theoretical assumptions, have been examined (Random Input Forests and Random Combination Forests). Using data from a large power gas turbine, the performance of Ensemble Random Forests has been evaluated, and also compared against other machine learning classification methods, such as Neural Networks, Classification and Regression Trees and K-Nearest Neighbor. The Ensemble Random Forests reached a level of 97 per cent in terms of precision and recall in engine condition diagnosis from new signals acquired from the gas turbine, which was higher than the performance of all the other examined classification methods. These results provide first some evidence that Ensemble Random Forest can be an effective tool for the extraction, codification and exploitation & 2012 Operational Research Society Ltd 0953-5543 OR Insight Vol. 25, 2, 80–104 www.palgrave-journals.com/ori/ of the technological knowledge assets of modern organizations, and contribute significantly to the improvement of organizations’ decision making and interventions in this area. OR Insight (2012) 25, 80–104. doi:10.1057/ori.2011.15; published online 26 October 2011

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gas Turbine Fault Diagnosis using Random Forests

In the present paper, Random Forests are used in a critical and at the same time non trivial problem concerning the diagnosis of Gas Turbine blading faults, portraying promising results. Random forests-based fault diagnosis is treated as a Pattern Recognition problem, based on measurements and feature selection. Two different types of inserting randomness to the trees are studied, based on diff...

متن کامل

Identification and Robust Fault Detection of Industrial Gas Turbine Prototype Using LLNF Model

In this study, detection and identification of common faults in industrial gas turbines is investigated. We propose a model-based robust fault detection(FD) method based on multiple models. For residual generation a bank of Local Linear Neuro-Fuzzy (LLNF) models is used. Moreover, in fault detection step, a passive approach based on adaptive threshold is employed. To achieve this purpose, the a...

متن کامل

Robust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks

Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...

متن کامل

Online Fault Detection and Isolation Method Based on Belief Rule Base for Industrial Gas Turbines

Real time and accurate fault detection has attracted an increasing attention with a growing demand for higher operational efficiency and safety of industrial gas turbines as complex engineering systems. Current methods based on condition monitoring data have drawbacks in using both expert knowledge and quantitative information for detecting faults. On account of this reason, this paper proposes...

متن کامل

Robust Model- Based Fault Detection and Isolation for V47/660kW Wind Turbine

In this paper, in order to increase the efficiency, to reduce the cost and to prevent the failures of wind turbines, which lead to an extensive break down, a robust fault diagnosis system is proposed for V47/660kW wind turbine operated in Manjil wind farm, Gilan province, Iran. According to the acquired data from Iran wind turbine industry, common faults of the wind turbine such as sensor fault...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • OR Insight

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2012